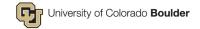
Selecting Projects Delivery Methods and Building Cohesive Teams

DBIA 2016 Rocky Mountain Regional Conference

Keith R. Molenaar, PhD, DBIA University of Colorado Boulder



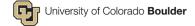
Learning Objectives

By the end of this presentation, you should be able to:


- Explain project delivery selection approaches for projects in transit, airports, highways, wastewater and buildings
- Describe how to promote integrated and cohesive teams on building design and construction projects
- Describe the types of DBIA Certification

ACRP

There is no single best delivery method



What is most important when selecting a project delivery method?

- Project Complexity
- Owner Characteristics
- Project Goals

- Market Characteristics
- Need for Innovation
- Procurement Constraints

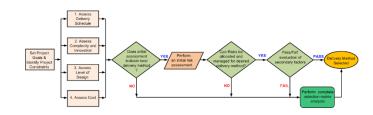
Defining Project Goals

Schedule Goals

- Finish by a date certain
- Minimize project delivery time
- Accelerate start of project revenue

Quality Goals
Functional Goals

Cost/Budget Goals


- Minimize project cost
- Complete the project on budget
- Maximize the project scope within the project budget

- Owners need a formal method for selecting project delivery methods
- Process should align project goals with opportunities and constraints of delivery methods



Approach for Transit Projects

- TCRP 131 Guidebook for the Evaluation of Project Delivery Methods
- Transit project are unique due to long-term operations
- Guidebook focuses on
 - Project-level issues
 - Agency-level issues
 - Public policy/regulatory issues
 - Lifecycle issues

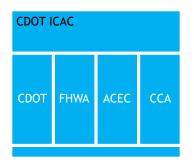
Approach for Airports

- ACRP Report 21 Guidebook for Selecting Airport Capital Project Delivery Methods
- Airports are unique due to their on-going operations
- Guidebook focuses on
 - Project-level issues
 - Airport-level issues
 - Public policy/regulatory issues

Approach for Highways

- Project Delivery Selection Matrix
 - Colorado Department of Transportation
 - Next Generation Transportation Construction
 Management Pooled Fund Study

http://www.colorado.edu/tcm




Project Delivery Selection Matrix

Pilot Projects

Delivery Decision Guide

How does it work?

- Create project description checklist
- Develop project goals and identify project constraints
- Evaluate the primary factors
 - 1. Delivery schedule
 - 2. Complexity and innovation
 - 3. Level of design
 - 4. Cost
 - 5. Initial project risk assessment
- Evaluate the secondary factors
 - 6. Staff experience / availability
 - 7. Level of oversight and control
 - 8. Competition and contractor experience

How does it work?

Evaluate
Opportunities
and Obstacles
for Primary and
Secondary
Factors

1) Delivery Schedule

<u>DESIGN-BID-BUILD</u>				
Opportunities		Obst	tacles	
		•	•	
	DESIGN	N-BUILD		
Opportunities		Obst	tacles	
•		•		
	<u>CN</u>	<u>I/GC</u>		
Oppor	tunities	Obst	tacles	
		•		
	Delivery Sche	dule Summary		
	DBB	DB	CM/GC	
1. Delivery Schedule				
Key: + + Most appropriate delivery method + Appropriate delivery method - Least appropriate delivery method X Fatal Flaw (discontinue evaluation of this method) NA Factor not applicable or not relevant to the selection of project delivery Notes and Comments:				

How does it work?

Refer to
Checklists after
Workshop Team
has Exhausted
Project-Specific
Discussion

1) Delivery Schedule

	DE SIGN-BID-BUILD			
	Opportunities		Obstacles	
000000	Schedule is more predictable and more manageable Milestones can be easier to define Projects can more easily be "shelved" Shortest procurement period Elements of design can be advanced prior to permitting, construction, etc. Time to communicate discuss design with stakeholders		quires time to perform a linear design-bid- ruction process Design and construction schedules can be unrealistic due to lack industry input Errors in design lead to change orders and schedule delays Substitution may lead to potential delays and other adverse outcomes.	

DESIGN-BUILD			
Opportunities	Ob stacles		
☑Potential to accelerate schedule through parallel design-build process	Request for proposal development and procurement can be lengthy		
☐ Shifting schedule risk to DB team	☐ Undefined events or conditions found after		
☐ Encumbers construction funds more quickly	procurement, but during design can impact schedule and cost		
 Industry input into design and schedule 	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
☐ Fewer chances for disputes between agency and design-builders	Time required to define technical requirements and expectations through RFP development can be lengthy		
☐ More efficient procurement of long-lead items	☐ Time required to gain acceptance of quality program		
 Ability to start construction before entire design, ROW, etc. is complete (i.e., phased design) 	Requires agency and stakeholder commitments to an expeditious reviewof design		

	CM/GC			
	Opportunities	Obstacles		
	Ability to start construction before entire design, ROW, : is complete (i.e., phased design)	☑Potential for not reaching GMP and substantially delaying schedule		
	More efficient procurement of long-lead items	☑GMP negotiation can delay the schedule		
-	Early identification and resolution of design and construction issues (e.g., utility, ROW, and earthwork)	☐ Schedule-driven goals may drive up cost ☑Designer-contractor-agency disagreements can add delays		
	Can provide a shorter procurement schedule than DB	Strong agency management is required to control schedule		
	Team involvement for schedule optimization			
	Continuous constructability reviewand VE			
	Maintenance of Traffic improves with contractor inputs			

Delivery Selection Matrix Summary

PROJECT DELIVERY METHOD OPPORTUNITY/OBSTACLE SUMMARY				
	DBB	DB	CMGC	
Primary Evaluation Factors				
1. Delivery Schedule	X	++	-	
2. Project Complexity & Innovation	IVA	+	+	
3. Level of Design	NA	++	+	
4. Cost	NA	++	+	
5. Perform Initial Risk Assessment	NA	Risks can be properly allocated	NA	
Secondary Evaluation Factors				
6. Staff Experience/Availability (Owner)	NA	Pass	NA	
7.Level of Oversight and Control	NA	Pass	NA	
8. Competition and Contractor Experience	NA	Pass	NA	

⁺⁺ Most appropriate delivery method

NA Factor not applicable or not relevant to the selection

⁺ Appropriate delivery method

Least appropriate delivery method


X Fatal Flaw (discontinue evaluation of this method)

Approach for Water/Wastewater

- DBIA W/WW Committee
 Project Delivery Selection Matrix
- Treatment Technologies make W/WW projects unique
 - Facilitated PDSM
 - Abridged PDSM

http://www.colorado.edu/waterpdsm

Learning Objectives

By the end of this presentation, you should be able to:

 Explain project delivery selection approaches for projects in transit, airports, highways, wastewater and buildings

 Describe how to promote integrated and cohesive teams on building design and construction projects

Describe the types of DBIA Certification

ACRP

Maximizing Success on Integrated Projects: An Owner's Guide

An Overview of the research and Owner's Guide

Research Motivation

To improve owner delivery decisions by providing practical guidance based upon empirical evidence

1998 CII/Penn State Study of 351

projects Metric	D-B vs. D-B-B	D-B vs. CM@R
Unit Cost	6.1% lower	4.5% lower
Construction Speed	12.0% faster	7.0% faster
Delivery Speed	33.5% faster	23.5% faster
Cost Growth	5.2% less	12.6% less
Schedule Growth	11.4% less	2.2% less

Research Motivation

To improve owner delivery decisions by providing practical guidance based upon empirical evidence

	1998 CII RT 133	2015 CPF-CII
Question	How do project delivery methods impact performance?	How does the level of integration impact project delivery success?
Scope	Delivery - DBB, CMR and DB	Delivery, procurement, contracting, behaviors and environment
Findings	 ✓ DB was faster than DBB and CMR ✓ Cost and schedule growth were highest for DBB 	 ✓ Combined contracts were faster than split contracts ✓ Cost and quality were driven by procurement and contracting

Summary of Findings

- Delivery methods alone do not predict success
- Lines between delivery methods are blurred
- Owners drive project success by selecting strategies that promote <u>team integration</u> and <u>group cohesion</u>

Team Integration

- ✓ Reduced schedule growth
- √ Higher schedule intensity
- √ Cohesive teams

Team Cohesion

- ✓ Reduced cost growth
- ✓ Higher system quality
- ✓ Better turnover

Summary of Findings

Best performing delivery strategies maximize


- 1. Early involvement of the core team
- 2. Qualification-based team selection
- 3. Transparency in cost accounting

Early Involvement

- √ Faster delivery speed
- √ Faster construction speed
- ✓ Improves integration

QBS and Open Book

- √ Faster delivery speed
- ✓ Improves integration
- ✓ Improves cohesion

Number of Projects 1 32

Data Set

204 Projects

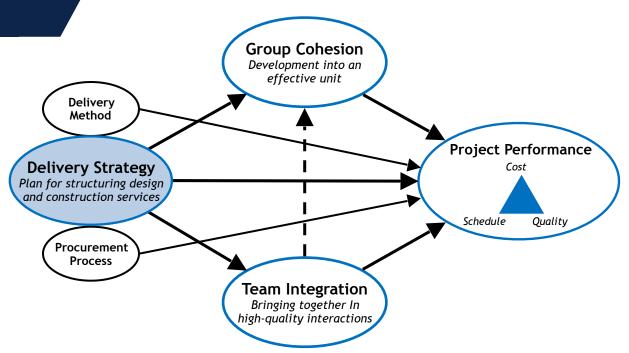
 Public:
 127 (62%)

 Private:
 77 (38%)

Completed: 2008 - 2013

Facility Sizes

(4%)	8	
(3%)	7	─ 600,000 - 699,000 ft²
(2%)	3	 500,000 - 599,000 ft²
(3%)	6	4 00,000 - 499,000 ft ²
(7%)	15	—— 300,000 - 399,000 ft ²
(13%)	26	200,000 - 299,000 ft ²
` ,		1 00,000 - 199,000 ft²
` ,		0 - 99,000 ft ²


Facility Types

Educational	5 6	(27%)
Office	41	(20%)
Health Care	32	(16%)
Lodging ////////	27	(13%)
Commercial	2 0	(10%)
Sports & Recreation	11	(5%)
Manufacturing	11	(5%)
Correctional =	4	(2%)
ft ² Transportation	2	(1%)

Framework

Goal: Determine if team processes and behaviors have an impact on project performance

Team

Integration

Group Cohesion


Integration

Degree to which team members from separate organizations and disciplines are engaged in collaborative activities

- Participation in:
 - Joint Goal Setting
 - Cross Disciplinary design charrettes
 - BIM Execution Planning
- Increased sharing of information and analysis through BIM
- Increased team interaction through colocation

Higher levels of integration led to:

- Reduced schedule growth
- Enabled *more intense schedules*
- Led to more cohesive teams

Team

Integration

Group Cohesion

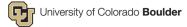

Group Cohesion

Degree to which team, as individuals, have shared, task commitment, group pride, and interpersonal alignment

- Commitment to shared goals
- High levels of team chemistry
- Communication is timely and effective

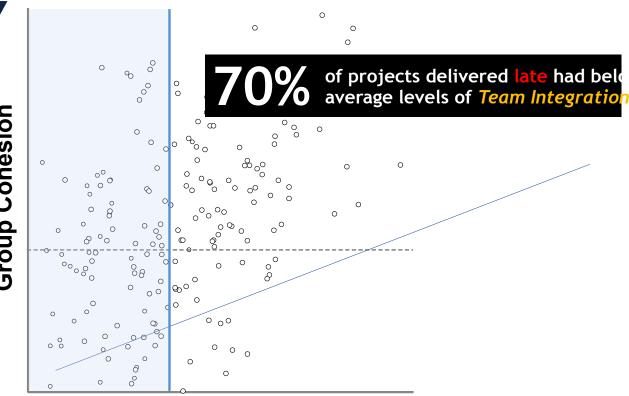
Higher group cohesiveness led to:

- Reduced cost growth
- Higher system quality
- Improved *turnover experience*



Factor Value

Group Cohesion

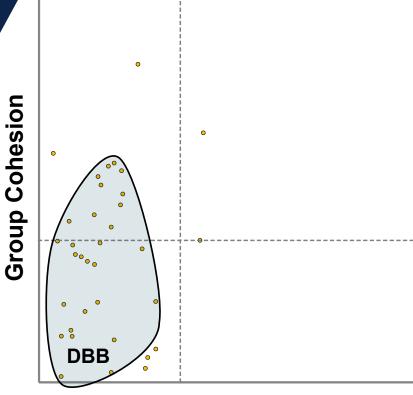

Team Integration

Factor Value

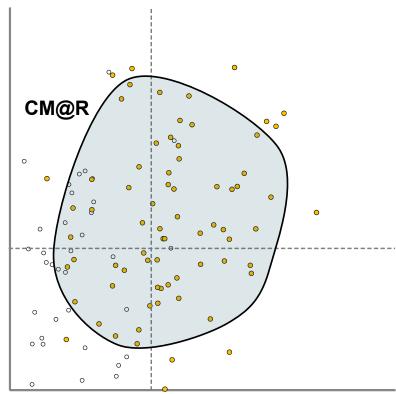
Cohesion Group



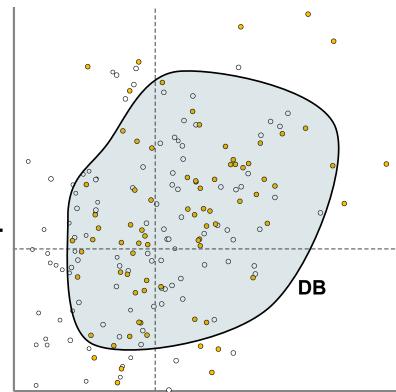
Team Integration


Factor Value

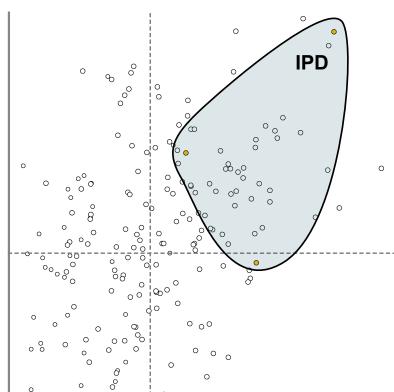
Team Integration



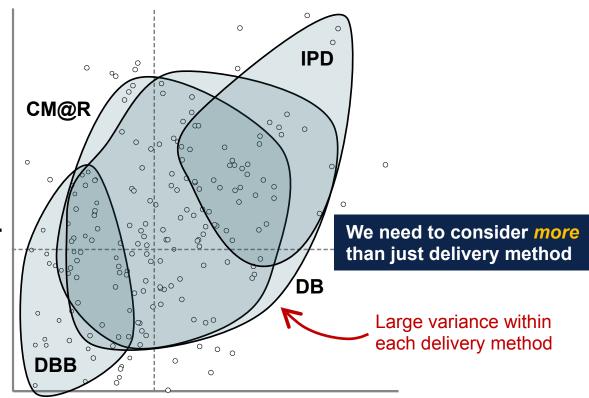
Team Integration



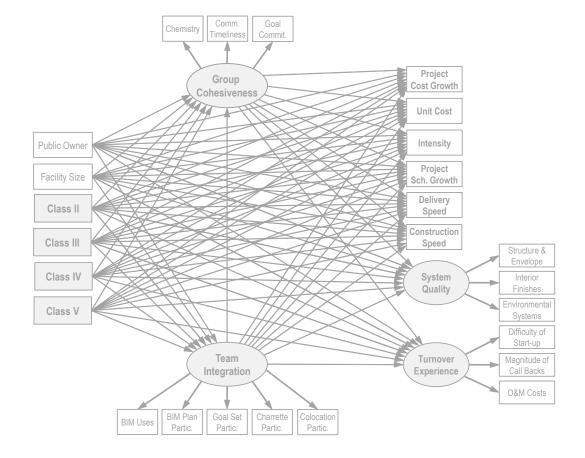
Team Integration



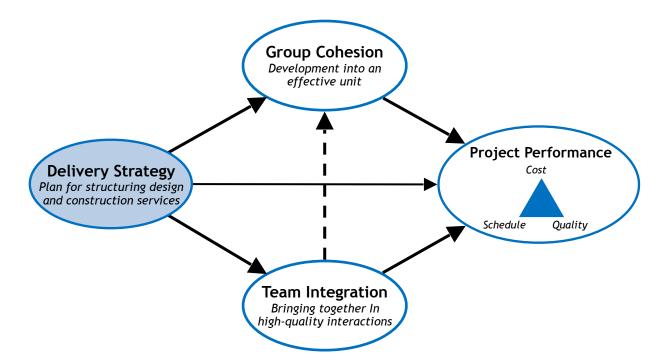
Team Integration

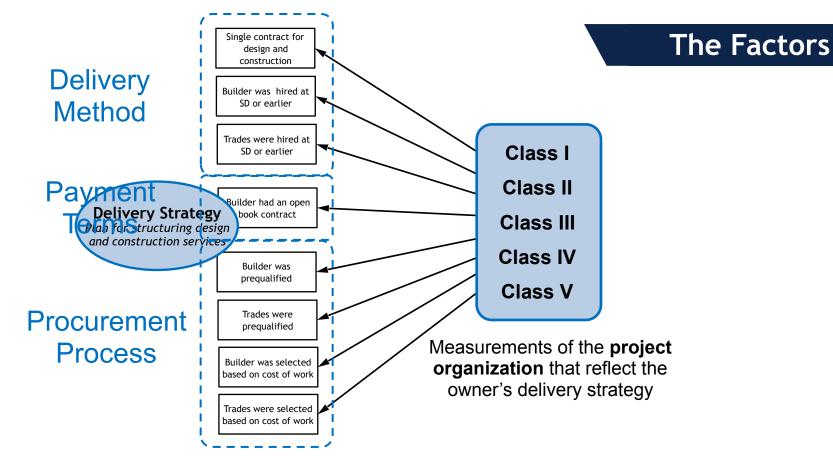


Team Integration

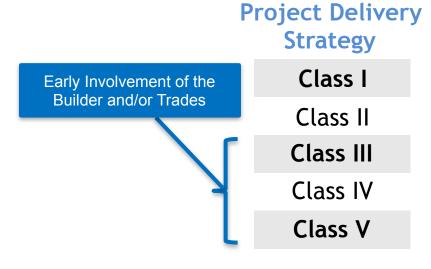


Team Integration

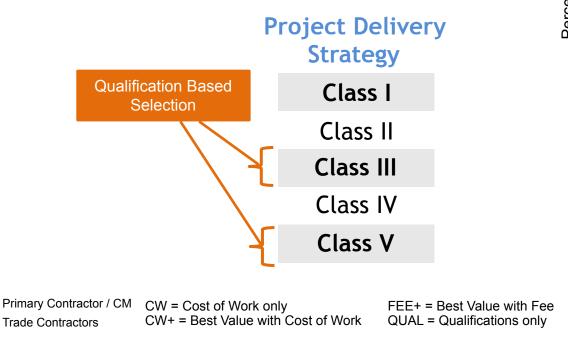

How did we come to these findings?

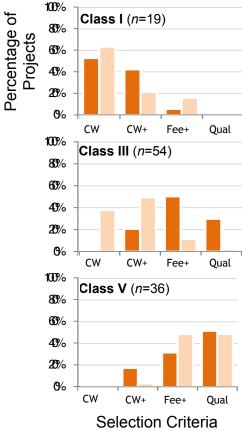


The Factors



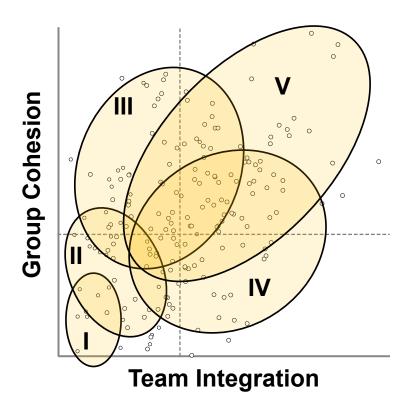
Timing of Involvement



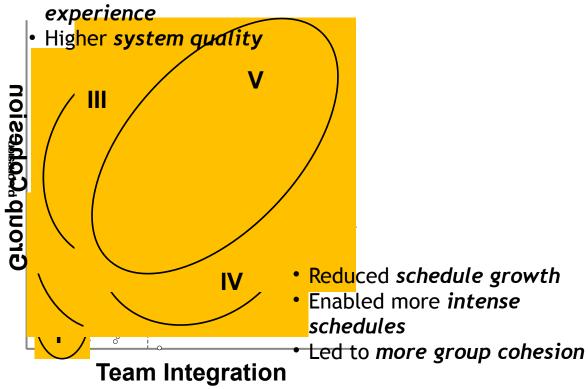

Primary Contractor / CM

Trade Contractors

Selection Criteria



Delivery Strategy



The Owner's Guide

Pulling it all together

- Reduced *cost growth*
- Improved *turnover*

Maximizing Successing Integrated Projects

An Owner's Guide

http://bim.psu.edu/ delivery

Sponsored by the Charles Pankow Foundation and the Construction Industry Institute

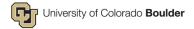
Website: http://bim.psu.edu/delivery

The Owner's Guide

Pulling it all together

Selecting a delivery strategy

- 1. Define the projects delivery needs
 - Define project goals
- 2. Explore the delivery strategy options
 - Organizational considerations
 - Contract payment needs
 - Team assembly considerations
- 3. Design the optimal delivery strategy
 - Consider project constraints
 - Benchmark the results against the research


Owner Guide Forms

What you should remember?

- Best path to project success is through building a TEAM - integration / cohesion
- You influence team through project delivery decisions
 - early involvement, open book, qualifications
- Project Delivery needs to be developed as a strategy


Learning Objectives

By the end of this presentation, you should be able to:

 Explain project delivery selection approaches for projects in transit, airports, highways, wastewater and buildings

 Describe how to promote integrated and cohesive teams on building design and construction projects

Describe the types of DBIA Certification

ACRP

What is the Credential

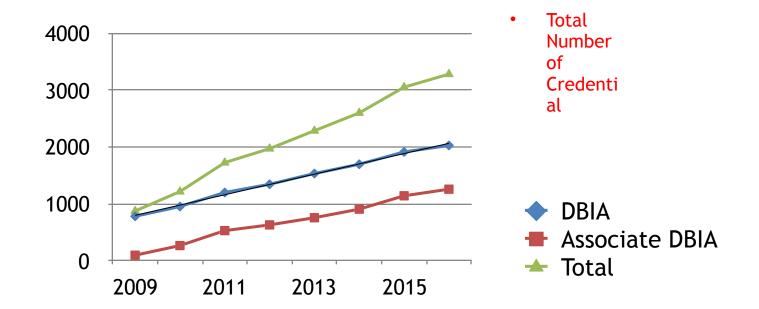
The Designated Design-Build Professional™ certification program is the premier credential for design-build professionals.

Through a combination of education, experience and testing, the DBIA certification program sets a recognized standard for design-build knowledge and expertise.

DBIA offers two types of Certification

DBIA™

 The DBIA™ certification requires from two to six years of handson experience of pre and post-award design-build.


Assoc. DBIA™


- The Assoc. DBIA™ certification does not require hands-on field experience, however it requires a different type of experience:
 - pre-award professionals (business development and acquisition/ procurement)
 - seasoned professionals new to design-build project delivery; and
 - emerging professionals (AEC industry college graduates)

Certified Design-Build Professionals

Selecting Projects Delivery Methods and Building Cohesive Teams

DBIA 2016 Rocky Mountain Regional Conference

Keith R. Molenaar, PhD, DBIA University of Colorado Boulder

